D-GLYCOPYRANOSYL PHENYLSULFONES: ACYLATION OF THEIR LITHIATED ANIONS AND REDUCTIVE DESULFONYLATION OF THE RESULTING ACYLATED SULFONES. A SYNTHESIS OFa-D-C-GLYCOSIDES

Jean-Marie Beau* and Pierre Sinay

Laboratoire de Biochimie Structurale, U.A. 499, U.E.R. de Sciences Fondamentales et Appliquées, 45046 Orléans Cédex, France

Summary: The lithiated anion of $3,4,6$ -tri-O-t-butyldimethylsilyl-2-deoxy-a β -D-glucopyranosyl phenylsulfone reacts with dimethylcarbonate and *various phenyl esters to give stable acylated products. Subsequent reductive lithiation leads to enolates which undergo kinetic protonation to afford selective* l ^v α -D-C-glucosides.

In the preceding paper¹, we established that coupling reaction between lithiated anions derived from 2-deoxy-D-glucopyranosyl sulfones and aldehydes (or primary iodides) leads to unstable tertiary sulfones 2 which are stereoselectively desulfonylated *in situ* to produce, after protonation, various simple or complex β -D-C-glucosides 4 (Scheme 1). The selectivity observed lies on the configurational

stability² of the kinetic anion 3 formed during the course of the desulfonylation by lithium naphthalenide (LN). This transient dianionic species 3 is then hydrolyzed with axial introduction of a proton. We now describe the same sequence of reactions from anomeric sulfones L (sulfone deprotonation, electrophilic trapping, desulfonylation and protonation) using carboxylic acid derivatives as electrophiles with the anticipation that the overall stereochemical outcome could possibly be different.

Treatment of $3,4,6$ -tri-O-t-butyldimethylsilyl-2-deoxy- α,β -D-glucopyranosyl phenylsulfone 1 with LDA (1.2 equiv., THF-hexanes, -78 °C, 5 min) followed by dimethylcarbonate (1.3 equiv., - 78 to 0 °C, 1 h) and hydrolysis (NH₄Cl, 0 °C) provided the stable tertiary carboxymethylated sulfones 5a,b^{5,6} (93% yield, isomeric ratio 5a:5b, 20:1) (Scheme 2). Configurational assignment at the tertiary carbon atom was based on the observed preference of a-D-phenylsulfonyl group to adopt an equatorial orientation⁷. Thus, from 1 H-n.m.r. spectroscopy, J_{3,4} and J_{4,5} of 8.2 and 8.8 Hz, respectively, for the minor isomer <u>5b</u> indicates that H-4 is mainly axial as would be expected in a 4C_1 (D) conformati The major isomer 5a shows $\text{J}_{3\text{-}b}$ and J_{b} c of 2.0 and 7.6 Hz, respectively (H-4 mainly equatori Furthermore a J₂ $_{4}$ value of 1.2 Hz is observed which points to a preferred $^{O}S_{2}$ (D) conformer in $\underline{\mathbf{5a}}^{\text{v}}$. These results are consistent with the steric demand of the bulky phenylsulfonyl group v whic tends to be equatorial in <u>5b</u> [C₁ (D) conformation] and <u>5a</u> [S₂ (D) conformation] and dominat the steric effect of the carboxymethyl group⁹. Desulfonylation of $5a$, by LN (THF, -100 °C, 10 min) and proton quenching (MeOH, 5 equiv., -78 °C) gave selectively the α -D-C-glycoside $\underline{\mathbf{6}}^{10}$ (78%,

u\$ ratio, 2O:l). This sequence performed in a one-pot procedure from starting phenylsulfones I gave identical stereochemical results (72% overall yield).

The use of phenyl esters as acylating agents proved to be particularly convenient. Thus, ketone 7^{11} (72% yield, α :8 ratio, 10:1) was obtained by the same one-pot sequence of reactions using phenyl benzoate (1 equiv.) as electrophile. Similarly, coupling reaction between lithiated sulfone¹² and phenyl

1,2-O-isopropylidene-D-glycerate $\underline{8}^{13}$ gave the expected ketone $\underline{9}^{10}$ (65.5%, [$\alpha]_{\cap}$ +1°), the previousl described' B-D-C-glycoside <u>T0</u> (3.1%) and the isomerised ketone <u>T1</u> (2.4%) (9:<u>10:IT</u> ratio, 27:1.3:1

Acylation of lithiated sulfone by phenyl (methyl 2,3-di-O-benzyl-4-deoxy-a-D-xylo-hexopyranosid)uronate <u>12</u> (1 equiv.) and phenyl (methyl 2,3,4-tri-O-benzyl-o-D-glucopyranosid)uronate <u>13</u> (1 equiv.) proceeds well to give acylated sulfones 14^{10} (65% yield) and 15^{10} (70% yield)¹⁶. Howeve

reductive desulfonylation by LN (same conditions) or by other reductive methods (Na(Hg), MeOF AcOEt, Na₂HPO₄¹⁷) of 14 or 15 gave poor results, only limited amounts (10-30%) of the expected C-glycosides 16 and 17 being isolated¹⁸.

The stereochemical outcome in the alkylation of metalated sulfones is ignored in most synthetic

applications as the sulfone group is readily removed. The acylation step described here shows good selectivity (from 20:1 to over) not relevant in this work but of interest for other transformations. The results are in agreement with the supposed structure of the lithiated sulfone^{1,19}. The selecti formation of α -D-C-glycosides following sulfone removal can probably be explained by the formation of the enolate 18 after reductive lithiation by LN either by enolization (desulfonylation on isolated

B-keto sulfone, path a) or by phenoxide (or methoxide) expulsion (one-pot procedure, path b). Ketonization by the subsequent approach of the proton donor from the exo side of the enol leads to the kinetically preferred a-product 19^{21} .

References and Notes

- 1. J.-M.Beau and P.Sinaÿ,<u>Tetrahedron Lett.</u>,preceding paper in this issue
- 2. Configurational stability of 2 refers to precise experimental conditions (THF, -78 'C). **Due to** the high chemical unstability of anomeric anions²⁹⁴, no attempts have been made to isomeri anionic species 3 to a more stable isomer.
- 3. J.-M. Lancelin, L. Morin-Allory and P. Sinaj;, J. **Chem. Sot.,** Chem. Commun., 355 (1984).
- 4. P. Lesimple, J.-M. Beau and P. Sinay, J. Chem. Soc., Chem. Commun., 894 (1985)
- 5. All new compounds gave satisfactory microanalytical and spectral data. Optical rotations were measured for solutions in CHCl₂ at 20 °C. ¹H-N.m.r. spectroscopy was performed in CDCl₂ solutions at 300 MHz with a Brucker AM-300WR spectrometer.
- 6. 5a: m.p. 107 112 "C (from MeOH); [cd, +42O; **selected 'H-n.m.r. data: 6 2.72 (IH, ddd, J2,4** 1.2, J_{2,3} 4.4, J_{2,2'} 14.4 Hz, H-2); 2.78 (1H, dd, J_{2',3} 2.8 J_{2,2'} 14.4 Hz, H-2'); 3.78 (1H, ddd $^{\circ}$ 2, <u>5b</u>: m.p. 135 °C (from MeOH); [a]_D +12°; selected 'H-n.m.r. data: δ 2.14 (IH, dd, J_{2ax 3} 10.8 $J_{2,4}$ 1.2, $J_{3,4}$ 2.0, $J_{4,5}$ 7.6 Hz, H-4). J_{2ax}, _{2eg} 12.9 Hz, H-2ax); 2.90 (IH, dd, J_{200,3} 4.3, J_{2ax} _{2eg} 12.9 Hz, H-2eq); 3.50 (IH, dd, J_{3 4} 8.2, J_{,, 5} 8.8 Hz, H-4)
- 7. Reference 9 in J.-M. Beau and P. Sinaÿ, <u>Tetrahedron Lett.</u>, first paper in this issue
- 8. E.L. Eliel and D. Kandasamy, <u>J. Org. Chem., 41</u>, 3899 (1976). The value given for the conform tional free energy of a phenylsulfonyl group in a cyclohexane ring (-AG° of 2.5 kcal/mol) shoul be higher for the same substituent at position 2 in a tetrahydropyran ring⁹.
- 9. E.L. Eliel, K.D. Hargrave, K.M. Pietrusiewicz and M. Manoharan, <u>J. Am. Chem. Soc., 104,</u> 363. (1982).
- 10.Selected ^H-n.m.r. data: (All following compounds have the …numbering system for a 2-deoxygluco unit)

6: 61.72 (IH, ddd, J_{1,2} 3.2, J_{2,3} 5.3, J_{2,2}, 13.1 Hz, H-2); 2.23 (IH, dd, J_{2',3} 2.8, J_{1,2'}9.4, J_{2,2'} 13.1 Hz, H-2'); 4.45 (1H, dd, $J_{1,2}$ 3.2, $J_{1,2}$, 9.4Hz, H-1).

- **9:** 6 1.72 (1H, ddd, $J_{1,2}$ 3.0, $J_{2,3}$ 4.2, $J_{2,2}$, 13.2 Hz, H-2); 2.06 (1H, ddd, $J_{2',3}$ 2.6, $J_{1,2'}$ 10.8, $J_{2,2}$, 13.2 Hz, H-2'); 4.47 (1H, dd, $J_{1,2}$ 3.0, $J_{1,2}$ 10.8 Hz, H-1).
- 11: 6 1.75 (1H, ddd, $J_{1,2}$ 3.0, $J_{2,3}$ 4.2, $J_{2,2}$, 13.6 Hz, H-2); 1.99 (1H, ddd, $J_{2',3}$ 2.7, $J_{1,2}$, 10.9, $1,2$
 $1,3$, 13.6 Hz, H-2'); 4.43 (1H, dd, $1,2$ 3.0, $1,2$ 10.9 Hz, H-1).
- 14: δ 2.15 (1H, dd, $J_{2,3}$ 6.4, $J_{2,21}$ 14.6 Hz, H-2); 2.82 (1H, dd, $J_{2',3}$ 3.2, $J_{2,21}$ 14.6 Hz, H-2'); 3.59 (1H, dd, $J_{3,4}$ 3.9, $J_{4,5}$ 8.5 Hz, H-4).
- 15: 6 2.47 (IH, dd, $1_{2,3}$ 9.0, $1_{2,2}$, 14.5 Hz, H-2); 2.96 (1H, dd, $1_{2,3}$ 4.5, $1_{2,2}$, 14.5 Hz, H-2'); 3.13 (1H, dd, $J_{3,4}$ 6.6, $J_{4,5}$ 9.0 Hz, H-4).
- 16: 6 1.74 (1H, ddd, $J_{1,2}$ 2.6, $J_{2,3}$ 3.7, $J_{2,2}$, 13.1 Hz, H-2); 1.99 (1H, ddd, $J_{2',3}$ 2.6, $J_{1,2}$, 11.2, $1_{2,2}$, 13.1 Hz, H-2'); 4.57 (1H, dd, $1_{1,2}$ 2.6, $1_{1,2}$, 11.2 Hz, H-1).
- $\frac{17}{12}$ δ 1.53 (1H, ddd, $\frac{1}{3}$ 1,2 2.9, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{2}$, 13.2 Hz, H-2); 2.10 (1H, ddd, $\frac{1}{2}$, $\frac{1}{3}$, 2.9, $\frac{1}{3}$, 1,2¹, 9.9, $\frac{1}{2}$, 13.2 Hz, H-1).
-
- 11. 7 was identical to ketone $\frac{1}{a}$ described in reference 7.
12. In this reaction, n-BuLi was used for sulfone deprotonation.
- 13. Phenyl 1, 2-O-isopropylidene-D-glycerate $\underline{8}$ ([a]_D +7.4°) was prepared in a 71% overall yield from 1,2-O-isopropylidene-D-glyceraldehyde by i) KMnO₄, KOH, water, room temperature¹⁴, ii) (COCI)₂, THF, room temperature, 2h and iii) PhOH, pyridine, THF, room temperature, 1 h.
-
- 14. A. Tanaka and K. Yamashita, Agric. Biol. Chem., 44, 199 (1980).
15. Phenyl esters 12 ([a]_D +45°) and 13 ([a]_D +12°) were prepared from the corresponding alcohols in 59 and 55% overall yield, respectively by i) Jones oxidation, room temperature, ii) (COCI)₂, THF, pyridine, 0°, 30 min and iii) PhOH, pyridine, THF, room temperature, 30 min.
- 16. Only one isomer could be detected in both cases. The configurations at the quaternary carbon
	- atom shown in 14 and 15 were proposed by comparing their 1 H-n.m.r. spectra with that of methyl ester 5a.
- 17. M. Julia and J.-M. Paris, Tetrahedron Lett., 4833 (1973); B.M. Trost, H.C. Arndt, P.E. Strege and T.R. Verhoeven, Tetrahedron Lett., 3477 (1976).
- 18. Among other degradation products, hemi-ketals i and ii were isolated.

We have some indications, although not yet proven, that the usual homolytic cleavage of the C-1'-S bond leading to the expected products compete with the S-Ph cleavage. Further hydrolysis of the sensitive sulfonate thus produced would then give compounds i and ii . More experimentation is necessary to clarify this point.

- 19. The planar or tetrahydral nature of a carbanion stabilized by a sulfone group is still an unsettled Important synthetic studies involving alkylation of lithiated allyl sulfones²⁰ strongly problem. suggest these organometallic species to be pyramidal rather than planar. In our studies, lithiated anomeric sulfones are considered pyramidal.
- 20. B.M. Trost and N.R. Schmuff, J. Am. Chem. Soc., 107, 396 (1985).
- 21. Kinetic protonation or electrophilic attack of the exo-enolic moiety of conformationally biased six-membered ring compounds is under the control of steric factors which favors an exo (equatorial)
- approach²². Additional influence of electronic factors is not completely ruled out in our case. 22. H.E. Zimmerman and L.W. Linder, J. Org. Chem., 50, 1637 (1985) and references cited; H.O. House, B.A. Tefertiller and H.D. Olmstead, J. Org. Chem., 33, 935 (1968); H.O. House and B.M. Trost, J. Org. Chem., 30, 2502 (1965).

(Received in France 29 September 1985)