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Summary: The lithiated anion of 3,4,6-tri-O-t-butyldimethylsilyl-2-deoxy-cq& phenyl- 
sulfone reacts with dimethylcarbonate and various phenyl esters to give stable acylated products. 
Subsequent reductive lithiation leads to enolates which undergo kinetic protonation to afford selective- 
ly cc-D-C-glucosides. 

In the preceding paper’, we established that coupling reaction between lithiated anions derived 

from 2-deoxy-D-glucopyranosyl sulfones and aldehydes (or primary iodides) leads to unstable tertiary 

sulfones 2 which are stereoselectively desulfonylated in situ to produce, after protonation, various 

simple or complex 8-D-C-glucosides 4 (Scheme II. The selectivity observed lies on the configurational 
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stability2 of the kinetic anion 1 formed during the course of the desulfonylation by lithium naphthale- 

nide (LN). This transient dianionic species 2 is then hydrolyzed with axial introduction of a proton. 

We now describe the same sequence of reactions from anomeric sulfones L (sulfone deprotonation, 

electrophilic trapping, desulfonylation and protonation) using carboxylic acid derivatives as electrophiles 

with the anticipation that the overall stereochemical outcome could possibly be different. 

Treatment of 3,4,6-tri-O-t-butyldimethylsilyl-2-deoxy~,~D-glucopyranosyI phenylsulfone 1 with 

LDA (1.2 equiv., THF-hexanes, -78 ‘C, 5 min) followed by dimethylcarbonate (1.3 equiv., - 78 to 

0 “C, I h) and hydrolysis (NH4C1, 0 ‘CI provided the stable tertiary carboxymethylated sulfones @ 576 

(93% yield, isomeric ratio s, 2O:lI (Scheme 2). Configurational assignment at the tertiary carbon 

atom was based on the observed preference of a-D-phenylsulfonyl group to adopt an equatorial orienta- 

tion7. Thus, from 
1 

H-n.m.r. spectroscopy, J3,4 and J4,5 of 8.2 and 8.8 Hz, respectively, for the 

minor isomer 5b indicates that H-4 is mainly axial as would be expected in a 
4 

C, (DI conformation6. - 

The major isomer 5a shows J3 4 and J4 5 of 2.0 and 7.6 Hz, respectively (H-4 mainly equatorial). 

Furthermore a J2 4 value of I.5 Hz is ibserved which points to a preferred 
0 

S2 (D) conformer in 

5a6. which - These resulis are consistent with the steric demand of the bulky phenylsulfonyl group8 

tends to be equatorial in 5b [‘C, (DI - conformation] and 5a [OS2 (DI conformation] and dominates - 

the steric effect of the carboxymethyl group9. Desulfonylation of w by LN (THF, -100 ‘C, 10 

min) and proton quenching (MeOH, 5 equiv., -78 OC) gave selectively the a-D-C-glycoside 5 lo (78%, 
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Scheme 2 

1 \ 6 
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u$ ratio, 2O:l). This sequence performed in a one-pot procedure from starting phenylsulfones I gave 

identical stereochemical results (72% overall yield). 

The use of phenyl esters as acylating agents proved to be particularly convenient. Thus, ketone 

z” (72% yield, cr:8 ratio, 1O:l) was obtained by the same one-pot sequence of reactionsf;sing phenyl 

benzoate (I equiv.) as electrophile. Similarly, coupling reaction between lithiated sulfone and phenyl 
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1,2-0-isopropylidene-D-glycerate 8 
13 

gave the expected ketone 2 lo (6X5%, [a], + I “), the previously 

described’ BD-C-glycoside g (3.1%) and the isomerised ketone fi (2.4%)” (9.10.11 ratio, 27:1.3:1). -‘__._ 

Acylation of lithiated sulfone by phenyl (methyl 2,3-di-0-benzyl+deoxy-o-D-u-hexopyrano- 

sidluronate 12 (I equiv.) and phenyl (methyl 2,3,4-tri-0-benzyl-D-glucopyranosid)uronate 13 - I5 (I 

- equiv.) proceeds well to give acylated sulfones 14 
10 

(65% yield) and fife (70% yield)16. However, 

12 R’=H 

Q R’,OBn 
14R’ZH 
fiRl=OBn 

16 R’,H 

1_1 R’=OBn 
reductive desulfonylation by LN (san,e conditions) or by other reductive methods (Na!Hg), MeOH- 

AcOEt, Na2HP0417) of E or E par: poor results, only limited amounts (IO-30%) of the expected 

C-glycosides 16 and 17 being isolated . - - 
The stereochemical outcome in the alkylation of metalated sulfones is ignored in most synthetic 
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applications as the sulfone group is readily removed. The acylation step described here shows good 

selectivity (from 2O:l to over) not relevant in this work but of interest for other transformations. 

The results are in agreement with the supposed structure of the lithiated sulfone 
7,19 . The selective 

formation of o-D-C-glycosides following sulfone removal can probably be explained by the formation 

of the enolate g after reductive lithiation by LN either by enolization (desulfonylation on isolated 

R=Si$- 

B-keto sulfone, path a) or by phenoxide 

tion by the subsequent approach of the 

tally preferred a-product E2 ‘. 

f&f ; “&-$$j -($&,@l 
0 

‘2 1_9 
(or methoxide) expulsion (one-pot procedure, path b). Ketoniza- 

proton donor from the exo side of the enol leads to the kineti- 
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